DEPARTMENT OF INDUSTRIAL ENGINEERING COURSE SYLLABUS

COURSE TITLE	ENGLISH CODE/NO	ARABIC CODE/N O.	CREDITS			
			Th.	Pr.	Tr.	Total
Computer Aided Manufacturing Systems	IE 423	هـ ص ٤٢٣	3	1	-	3
Pre-requisites:	IE 322					
Course Role in Curriculum	Required or Elective:		Elective			

Catalogue Description:

Foundation of CAD/CAM. Fundamentals of CAM. Computer graphics software and data. Computer aided manufacturing: numerical control, NC part programming, NC, DNC and CNC systems. Industrial robots and applications. Computer Integrated manufacturing systems (CIMS).

Textbooks:

INTRODUCTION TO COMPUTER NUMERICAL CONTROL, Valentino J., and Goldenberg J., 3rd Ed, Prentice Hall, 2003

References:

COMPUTER INTEGRATED MANUFACTURING, iWeatherall A., Butterworth Heinmann, 1985, Seamens W.S., Computer Numerical Control – Concepts and Programming, Delmar, 1983

Supplemental Materials:

Course Learning Outcomes:

By the completion of the course the student should be able to:

- 1. Develop the knowledge of CNC Machines.
- 2. Understand the basic principles and techniques of CAM.
- 3. Comprehend the different types of CNC machines especially milling and lathe machines.
- 4. Understand the different machining operations and tooling used for these operations.
- 5. Explore the advanced features of the modern CNC machining centers.
- 6. Understand and write NC part programs.
- 7. Understand the preparatory functions.
- 8. Understand the auxiliary functions.
- 9. Analyze & solve a real life problem for Term project with a team.
- 10. Understand the basic elements of APT programming language.
- 11. Comprehend the advantages of using the latest CAD/CAM technology

<u>To</u>	pics to be Covered:	<u>Duration in</u> <u>Weeks</u>	
1	Introduction to CNC machines: advantages of CNC machines, different CNC machines, different machining operations, tooling for milling and lathe operations, cutting fluids for CNC operations, automatic tool changing systems, pallet loading systems.	2	
2	Programming hole operations: programming language format, preparatory functions, dimensional functions, miscellaneous functions, fixed cycles, hole operation commands.	3	
3	Programming linear profiles: linear interpolation commands, writing linear profiling programs, determining cutter offsets for inclined line profiles.	3	
4	Programming circular profiles: specifying the plane, circular interpolation commands, profiling at constant feed rate.	2	
5	CNC lathe programming: lathe axes of motion, basic lathe operations, lathe setup commands, preparatory functions, miscellaneous functions.	2	
6	Introduction to Computer-Aided-Part-Programming: basic elements of APT programming language, geometry commands, setup commands, tool motion commands.	2	
Stu	adent Outcomes addressed by the course: (Put a √ sign)		
(a) (b) (c)	 an ability to design and conduct experiments, as well as to analyze and interpret data an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health 	٧	
(d	and safety, manufacturability, and sustainability) an ability to function on multidisciplinary teams		
(e) (f) (g) an understanding of professional and ethical responsibility) an ability to communicate effectively	√	
(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context		

Key Student Outcomes assessed in the course: () and ()

(j) a knowledge of contemporary issues

Instructor or course coordinator: Dr. Raed Reda Obaid

a recognition of the need for, and an ability to engage in life-long learning

(k) an ability to use the techniques, skills, and modern engineering tools necessary for

Last updated: Jan. 2013

engineering practice.